Hunting for the central charge of the Virasoro algebra: six- and eight-state spin models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 192439
(http://iopscience.iop.org/0305-4470/19/12/028)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:18

Please note that terms and conditions apply.

Hunting for the central charge of the Virasoro algebra: six- and eight-state spin models

G von Gehlen and V Rittenberg
Physikalisches Institut, Universität Bonn, Nussallee 12, D-5300 Bonn 1, West Germany

Received 23 September 1985

Abstract

In two dimensions conformal invariance has important implications for the finite-size scaling properties of the spectra of transfer matrices and quantum chains at the critical point. Some relations between the finite-size scaling amplitudes are obtained which can be used as a test of conformal invariance and implicitly to distinguish between second-order and first-order phase transitions. The numerical values of the scaling amplitudes give the scale dimensions of various operators.

Six- and eight-state self-dual quantum chains with cubic symmetries are considered at the critical point for three values of the coupling constant. The systems are found to be conformal invariant and estimates for several critical exponents are obtained. Based on the approximate values of the critical exponent one tries to find the values of the corresponding central charges of the Virasoro algebras.

1. Introduction

It was shown by Cardy (1984a) using conformal invariance that for a strip with N lattice spacings and periodic boundary conditions the inverse correlation length κ behaves at the critical point of the infinite system like

$$
\begin{equation*}
\kappa=A N^{-1} \tag{1.1}
\end{equation*}
$$

with the finite-size scaling amplitude A

$$
\begin{equation*}
A=2 \pi x \tag{1.2}
\end{equation*}
$$

where x is the scale dimension of the operator concerned. In this way an earlier observation by Luck (1982), Derrida and de Seze (1982), Nightingale and Blöte (1983) and Privman and Fisher (1984) is explained. It was subsequently shown by Cardy (1984b) that for other boundary conditions the proportionality factor in (1.1) is different but is still related to the critical exponents like the surface exponents (free boundary conditions) or the scale dimensions of 'para-fermionic' operators \dagger ('antiperiodic' boundary conditions).

Subsequently conformal invariance was applied to the finite-size scaling properties of quantum chains (Burkhart and Guim 1985, von Gehlen et al 1986) and the corresponding finite-size scaling amplitudes have been determined.

An important consequence of this study is that for the energy-energy correlations with free and 'antiperiodic' boundary conditions (in general there are several of them) the amplitudes A in (1.1) are all equal to 2π providing a test of conformal invariance.

[^0]An immediate application of this observation is that we have in our hand a method which allows us to decide from finite-size scaling if a transition is first or second order. Indeed, if in numerical calculations we find the amplitudes close to 2π, we have a good reason to believe that the transition is second order. A second method to check conformal invariance is obviously (when considering other correlation functions) to compare the numerical values of A with $2 \pi x$ where x is known from other sources.

In this paper we use conformal invariance combined with finite-size scaling in order to settle the controversial issue of the nature of the phase transition for the six- and eight-state spin systems with cubic symmetry (Kim et al 1975, Aharony 1977). Using the vacancy generating renormalisation group transformation, Nienhuis et al (1983) have found that the phase transition is first order. A similar result was obtained by Igloi (1986a, b). On the other hand Monte Carlo calculations by Badke et al (1985) suggest a second-order phase transition. This result was supported by Patkos and Rujan (1985). In the present paper we consider self-dual quantum chains with cubic symmetry and do a finite-size scaling analysis using up to eight sites for the six-state model and seven sites for the eight-state model. In both cases we find that we have conformal invariance and thus the transitions are second order. At the same time several estimates for the critical exponents are obtained.

At this point one can push the understanding of the problem one step further and obtain the exact values of the critical exponents. In principle this can be done if we guess the value of the central charge of the Virasoro algebra (Belavin et al 1984), assume unitary representations (Friedan et al 1984) and assign the various operators which appear in finite-size scaling to certain irreducible representations of the Virasoro algebra (Dotsenko 1984, Cardy 1984c, von Gehlen et al 1986). This procedure might work if the estimates for the critical exponents are much more precise than ours, since for a given central charge there are many possible anomalous dimensions and their values vary smoothly with the central charge. We have thus adopted a different philosophy based on our experience with the Potts (1952) model (von Gehlen et al 1985). We have guessed the representations of the Virasoro algebra corresponding to some operators and have tried to determine the central charge from the numerical values of the finite-size scaling amplitudes. As will be seen our guess was right and we have obtained a consistent picture of the anomalous dimensions but their values are rather insensitive to the precise value of the central charge. Similar problems are bound to happen with other spin systems unless one finds on conceptual grounds a connection between the properties of the spin system and the value of the central charge of the Virasoro algebra.

The paper is organised as follows. In § 2 we describe the model and its symmetry properties. In § 3 we summarise the connection between the finite-size scaling amplitudes of quantum chains and the critical exponents. Section 4 describes briefly our assumptions about the correspondence between various operators and the irreducible representations. In $\S 5$ we present the estimates for the finite-size scaling amplitudes, we check the conformal invariance of our systems and make the connection between our estimates for the critical exponents and the Virasoro algebra. Our conclusions are presented in § 6.

2. The cubic symmetric self-dual Hamiltonian

Recently Badke et al (1985) have studied the two-dimensional six- and eight-state spin models with cubic symmetry using the Monte Carlo method and have claimed to
observe second-order phase transitions with

$$
\begin{array}{lll}
x_{t} \approx \frac{1}{2} & x_{h} \approx 0.15 & (\text { six-state model }) \\
x_{t} \approx \frac{1}{3} & x_{h} \approx 0.15 & (\text { eight-state model }) . \tag{2.2}
\end{array}
$$

Using the Hamiltonian version of the model and finite-size scaling Patkos and Rujan (1985) also obtain $x_{t} \sim \frac{1}{2}$ for the six-state model. This contrasts with the results of Nienhuis et al (1983) and Igloi (1986a, b) who claim first-order phase transitions.

In order to settle the controversy we consider here the self-dual Hamiltonian version of the model. In this way the critical point is known and the determination of the finite-size scaling amplitudes is thus more precise.

The N-site Hamiltonian with n states, ' \tilde{Q} ' boundary condition (von Gehlen et al 1985) and cubic symmetry is

$$
\begin{align*}
H^{(\tilde{Q})}=-\alpha \sum_{k=0}^{t-1} & \sum_{i=1}^{N}\left(\sigma_{i}\right)^{2 k+1}-\beta \sum_{k=0}^{t-2} \sum_{i=1}^{N}\left(\sigma_{i}\right)^{2 k+2} \\
& -\gamma \sum_{k=0}^{t-1} \sum_{i=1}^{N-1}\left(\Gamma_{i}\right)^{2 k+1}\left(\Gamma_{i+1}\right)^{n-2 k-1}-\delta \sum_{k=0}^{t-2} \sum_{i=1}^{N-1}\left(\Gamma_{i}\right)^{2 k+2}\left(\Gamma_{i+1}\right)^{n-2 k-2} \\
& -\gamma \sum_{k=0}^{t-1}\left(\Gamma_{N}\right)^{2 k+1}\left(\omega^{\hat{Q}} \Gamma_{1}\right)^{n-2 k-1}-\delta \sum_{k=0}^{t-2}\left(\Gamma_{N}\right)^{2 k+2}\left(\omega^{\hat{Q}} \Gamma_{i}\right)^{n-2 k-2} \tag{2.3}
\end{align*}
$$

where

$$
\begin{align*}
& n=2 t \quad \omega=\exp (2 \pi \mathrm{i} / n) \tag{2.4}\\
& \sigma_{i}=1 \otimes 1 \otimes \ldots \otimes \sigma \otimes 1 \ldots \otimes 1 \tag{2.5a}\\
& \Gamma_{i}=1 \otimes 1 \otimes \ldots \otimes \Gamma \otimes 1 \ldots \otimes 1 \tag{2.5b}\\
& \sigma=\left(\begin{array}{llll}
1 & & & 0 \\
& \omega & & \\
& & \ddots & \\
0 & & & \\
\omega^{n-1}
\end{array}\right) \quad \Gamma=\left(\begin{array}{cccc}
0 & 0 & \ldots & 1 \\
1 & 0 & \ldots & 0 \\
\vdots & \ddots & . & \\
0 & & 1 & \\
0
\end{array}\right) \tag{2.6}\\
& \sigma^{n}=\Gamma^{n}=1 . \tag{2.7}
\end{align*}
$$

For $\tilde{Q}=0$ we have periodic boundary conditions and for $\tilde{Q}=1, \ldots, n-1$ we have 'antiperiodic' boundary conditions. The Hamiltonian corresponding to the free boundary condition $\left(H^{(+)}\right)$is obtained by dropping the last two terms in (2.3).

In (2.3) α, β, γ and δ are coupling constants and the symmetry of the Hamiltonians (2.3) is $Z_{2} \sim S_{t}$ (the wreath product of Z_{2} and the permutation group of t objects S_{t}) which is a group of order $2^{t} t!$ (Badke et al 1985).

The Hamiltonians $H^{(\dot{Q})}$ and $H^{(\mathbf{F})}$ commute with the charge operator \hat{Q}

$$
\begin{equation*}
\hat{Q}=\sum_{i=1}^{N} q_{i}(\bmod n) \tag{2.8}
\end{equation*}
$$

where

$$
q=\left(\begin{array}{cccc}
0 & & & 0 \tag{2.9}\\
& 1 & & \\
& \ddots & \\
0 & & & n-1
\end{array}\right)
$$

and we denote the eigenvalues of \hat{Q} by $Q=0,1, \ldots, n-1$. Because of the charge conservation, the Hamiltonians $H^{(\tilde{Q})}$ and $H^{(\mathrm{F})}$ split into n charge sectors and we will denote the corresponding matrices by $H_{Q}^{(\hat{Q})}$ and $H_{Q}^{(\mathrm{F})}$.

The Hamiltonians $H^{(\tilde{Q})}$ are self-dual if

$$
\begin{equation*}
\beta=\alpha \epsilon \quad \gamma=\alpha \lambda \quad \delta=\alpha \varepsilon \lambda \tag{2.10}
\end{equation*}
$$

For convenience we choose the normalisation factor α in (2.10) to be

$$
\begin{equation*}
\alpha=2 / n(1+\varepsilon) \tag{2.11}
\end{equation*}
$$

and we are left with two coupling constants λ and ε. The n-state Potts model (Potts 1952) is obtained for $\varepsilon=1$.

The four-state model was studied by Kohmoto et al (1981) and Igloi and Sólyom (1984). They have shown that for $-\sqrt{ } 2 / 2 \leqslant \varepsilon \leqslant 1$ there is a single phase transition at $\lambda=1$ with a fixed critical exponent $x_{h}=\frac{1}{8}$ and a 'running' critical exponent

$$
\begin{equation*}
x_{t}=\frac{1}{2}\left(1-\frac{\cos ^{-1} \varepsilon}{\pi}\right)^{-1} \tag{2.12}
\end{equation*}
$$

In the present paper we consider the cases $n=6$ and 8 . We will assume the critical point to be at $\lambda=1$ and will take three values for $\varepsilon\left(\varepsilon=0, \frac{1}{3}\right.$ and $\left.\frac{3}{5}\right)$. We will perform a complete finite-size scaling study of the systems as explained in § 3 . Such a study has not yet been done in the $n=4$ case. Before proceeding with our finite-size scaling analysis let us mention some symmetry properties which follow from the cubic symmetry of the Hamiltonians and self-duality at $\lambda=1$.
(a) $n=6$

$$
\begin{array}{lll}
H_{Q}^{(\bar{Q})}=H_{\hat{Q}}^{(Q)} & H_{2}^{(\tilde{Q})}=H_{4}^{(\tilde{Q})} & H_{1}^{(\tilde{Q})}=H_{5}^{(\tilde{Q})} \\
H_{1}^{(\mathrm{F})}=H_{5}^{(\mathrm{F})} & H_{2}^{(\mathrm{F})}=H_{4}^{(\mathrm{F})} & \tag{2.13b}
\end{array}
$$

(there are ten independent matrices $H_{Q}^{(\tilde{Q})}$ and four independent matrices $H_{Q}^{(\mathrm{F})}$).
(b) $n=8$
$H_{Q}^{(\bar{Q})}=H_{\overparen{Q}}^{(Q)} \quad H_{1}^{(\bar{Q})}=H_{7}^{(\tilde{Q})} \quad H_{2}^{(\bar{Q})}=H_{6}^{(\tilde{Q})} \quad H_{3}^{(\tilde{Q})}=H_{5}^{(\bar{Q})}$
$H_{1}^{(2 k)}=H_{3}^{(2 k)}=H_{5}^{(2 k)}=H_{7}^{(2 k)} \quad k=0,1,2,3$
$H_{1}^{(\mathrm{F})}=H_{3}^{(\mathrm{F})}=H_{5}^{(\mathrm{F})}=H_{7}^{(\mathrm{F})} \quad H_{2}^{(\mathrm{F})}=H_{6}^{(\mathrm{F})}$
(there are eleven independent matrices $H_{Q}^{(\tilde{Q})}$ and four independent matrices $H_{Q}^{(\mathrm{F})}$).
We are in a position to see the implications of conformal invariance on the spectra of the matrices $H_{Q}^{(\overline{(})}$ and $H_{Q}^{(\mathrm{F})}$.

3. Conformal invariance and finite one-dimensional quantum chains

In this section we summarise the results obtained by von Gehlen et al (1985) on the finite-size scaling properties of quantum chains at the critical point.

Let

$$
\begin{equation*}
x_{A}=\Delta_{A}+\bar{\Delta}_{A} \quad s_{A}=\bar{\Delta}_{A}-\Delta_{A} \tag{3.1}
\end{equation*}
$$

be the scale dimensions $\left(x_{A}\right)$ and $\operatorname{spin}\left(s_{A}\right)$ of an operator ϕ_{A}. The two-point correlation function is

$$
\begin{equation*}
\left\langle\phi_{A}\left(z_{1}, \bar{z}_{1}\right) \phi_{A^{\prime}}\left(z_{2}, \bar{z}_{2}\right)\right\rangle=\delta_{A A^{\prime}}\left(z_{1}-z_{2}\right)^{-2 \Delta_{A}}\left(\bar{z}_{1}-\bar{z}_{2}\right)^{-2 \bar{\Xi}_{A}} . \tag{3.2}
\end{equation*}
$$

Here

$$
\begin{equation*}
z=x+\mathrm{i} y \quad \bar{z}=x-\mathrm{i} y \tag{3.3}
\end{equation*}
$$

x, y are the coordinates in the plane.
We now define the notation. We start with spinless operators. We denote by x_{t} the scale dimensions of the energy density, by $x_{Q}(Q=1, \ldots, n-1)$ the scale dimensions of the order operators σ_{Q} and by $x_{Q, s}$ the surface exponents (Binder 1983) of the order operators. Since our systems are self-dual, the scale dimensions of the order operators σ_{Q} and disorder operators $\mu_{\dot{Q}}$ are the same.

The short-distance product of the operators σ_{Q} and $\mu_{\tilde{Q}}$ generates the 'parafermionic' operator $\psi_{Q, \tilde{Q}}$ (Fradkin and Kadanoff 1980) with scale dimensions $x_{Q, \tilde{Q}}$ and $\operatorname{spin} S_{Q, \hat{Q}}$.

We denote by $E_{Q}^{(\tilde{Q})}(r), r=0,1,2, \ldots$, the eigenvalues of the matrices $H_{Q}^{(\tilde{Q})}$ defined in the previous section. $E_{Q}^{(\hat{Q})}(0)$ corresponds to the ground state, $E_{Q}^{(\tilde{Q})}(1)$ to the first excited state, etc. Similarly $E_{Q}^{(\mathcal{F})}(r), r=0,1,2, \ldots$, represent the eigenvalues of the matrices $H_{Q}^{(F)}$. The eigenvalues $E_{Q}^{(\mathcal{Q})}(r)$ and $E_{Q}^{(F)}(r)$ correspond to the N-site problem and their values depend on N. As shown by von Gehlen et al (1985) following Cardy (1984a, b, c) we have the following results for the finite-size scaling amplitudes R (corresponding to the energy-energy correlations) and P (corresponding to the spin-spin correlations):
$R^{(0)}=\lim _{N \rightarrow \infty} N\left(E_{0}^{(0)}(1)-E_{0}^{(0)}(0)\right)=2 \pi \xi x_{t}$
$R^{(\tilde{Q})}=\lim _{N \rightarrow \infty} N\left(E_{0}^{(\tilde{Q})}(1)-E_{0}^{(\tilde{Q})}(0)\right)=2 \pi \xi$
$(\tilde{Q}=1, \ldots, n-1)$
$R^{(\mathrm{F})}=\lim _{N \rightarrow \infty} N\left(E_{0}^{(\mathrm{F})}(1)-E_{0}^{(\mathrm{F})}(0)\right)=2 \pi \xi$
$P_{0}^{(Q)}=\lim _{N \rightarrow \infty} N\left(E_{Q}^{(0)}(0)-E_{0}^{(0)}(0)\right)=2 \pi \xi x_{Q} \quad(Q=1, \ldots, n-1)$
$P_{Q}^{(\mathrm{F})}=\lim _{N \rightarrow \infty} N\left(E_{Q}^{(\mathrm{F})}(0)-E_{0}^{(\mathrm{F})}(0)\right)=2 \pi \xi x_{Q, s} / 2 \quad(Q=1, \ldots, n-1)$
$P_{Q}^{(\hat{Q})}=\lim _{N \rightarrow \infty} N\left(E_{Q}^{(\tilde{Q})}(0)-E_{0}^{(0)}(0)\right)=2 \pi \xi x_{Q, \tilde{Q}} \quad(\tilde{Q}, Q \neq 0)$.
The constant ξ in (3.4) and (3.5) appears because the normalisation of the quantum chains is free. (The constant α in (2.3) can be chosen at will; see (2.11).)

The information provided by (3.4)-(3.6) can be divided into two parts. The equality of the scaling amplitudes $R^{(\hat{Q})}(\tilde{Q} \neq 0)$ and $R^{(\mathrm{F})}$ can be used as a check of conformal invariance. If they are indeed equal, one can use their common value to determine ξ and in this way to obtain $x_{t}(3.4 a), x_{Q}(3.5 a), x_{Q, s}(3.5 b)$ and $x_{Q, \dot{Q}}(3.6)$. Notice that the finite-size scaling amplitudes provide us with information only on the scale dimensions of the operators and not on their spin. In the next section we will see that one can relate the spin and the scale dimensions.

We will postpone the finite-size scaling study of the six- and eight-state systems until §5. In the next section we will give an outlook on which kinds of scale dimensions we can expect. This discussion is based on our experience with the two-, three- and four-state Potts models (von Gehlen et al 1985).

4. Anomalous dimensions and conformal invariance

Let us assume that we have found that our spin systems are conformal invariant and that they correspond to a certain central charge $c \leqslant 1$ of the Virasoro algebra (Belavin et al 1984, Friedan et al 1984). If we require also unitarity, the anomalous dimensions Δ and $\bar{\Delta}$ (see (3.2)) are rational numbers $\Delta_{p, q}$ and $\bar{\Delta}_{p^{\prime}, q^{\prime}}$ where

$$
\begin{gather*}
\Delta_{p, q}=\frac{[(m+1) p-m q]^{2}-1}{4 m(m+1)} \quad \bar{\Delta}_{p^{\prime}, q^{\prime}}=\frac{\left[(m+1) p^{\prime}-m q^{\prime}\right]^{2}-1}{4 m(m+1)} \tag{4.1}\\
\left(1 \leqslant p, p^{\prime} \leqslant m-1,1 \leqslant q, q^{\prime} \leqslant m\right) \\
c=1-\frac{6}{m(m+1)} \quad m=3,4, \ldots \tag{4.2}
\end{gather*}
$$

(Notice that these considerations do not apply to the four-state model of Kohmoto et al (1981) since in this case $c=1$ as in the Thirring model (Fubini et al 1973) and x_{t} varies continuously with ε (see (2.12).)

Our next task is to assign to the various operators considered in § 3 the corresponding values $\Delta_{p, q}$ and $\bar{\Delta}_{p^{\prime}, q^{\prime}}$. We again follow von Gehlen et al (1985) and study separately the cases m odd and even.
(a) m odd. We assume (Dotsenko 1984) that all order parameters σ_{Q} have the same anomalous dimensions

$$
\begin{equation*}
x_{Q}=x_{h}=2 \Delta_{(m+1) / 2,(m+1) / 2}=\frac{(m+3)(m-1)}{8 m(m+1)} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{t}=2 \Delta_{2,1}=(m+3) / 2 m . \tag{4.4}
\end{equation*}
$$

For the surface exponent we take (Cardy 1984c)

$$
\begin{equation*}
\frac{x_{Q, s}}{2}=\frac{x_{h, s}}{2}=\frac{\Delta_{1,3}}{2}=\frac{1}{2} \frac{(m-1)}{(m+1)} . \tag{4.5}
\end{equation*}
$$

The two-, three- and four-state Potts models correspond to $m=3,5$ and ∞.
We assume, following Fradkin and Kadanoff (1980), that for a system defined on a Z_{p} cyclic group (our six- and eight-state models are defined on Z_{6} (respectively Z_{8}) (see (2.7))), the 'para-fermionic' operators $\psi_{Q, Q}^{Q}$ have a spin

$$
\begin{equation*}
s_{Q, \tilde{Q}}=Q \tilde{Q} / p \tag{4.6}
\end{equation*}
$$

This assumption was checked in the three-state Potts model where $s_{1,1}$ was found to be $\frac{1}{3}$ and in the four-state Potts model where $s_{1,1}$ and $s_{1,2}$ were found to be $\frac{1}{4}$ (respectively $\frac{2}{4}$). The Fradkin-Kadanoff conjecture failed however for $s_{2,2}$ where one expects $s_{2,2}=1$ and it was found that

$$
\begin{equation*}
x_{2,2}>s_{2,2} \quad x_{2,2} \simeq 0.45 \tag{4.7}
\end{equation*}
$$

From now on we will assume the relation (4.6) to be valid for $s<1$.
It was noticed by von Gehlen et al (1985) that for

$$
\begin{equation*}
p=(m+1) / 2 \tag{4.8}
\end{equation*}
$$

one has

$$
\begin{align*}
& s=l / p=\bar{\Delta}_{2 l, 2 l-1}-\Delta_{m-2 l, m-2 l} \tag{4.9a}\\
& x(s)=\bar{\Delta}_{2 l, 2 l-1}+\Delta_{m-2 l, m-2 l} \tag{4.9b}\\
& \quad=\frac{1}{2}+\left[s^{2}(m+1)-1\right] / 2 m \quad l=1,2, \ldots, p-1 .
\end{align*}
$$

From (4.9b) we obtain the bounds

$$
\begin{equation*}
1 \geqslant x(s) \geqslant \frac{1}{3} . \tag{4.10}
\end{equation*}
$$

We would like to stress that the choice (4.9) is not unique. Let us consider the case $m=11$ as an example and look for operators with spin $\frac{1}{6}, \frac{2}{6}, \frac{3}{6}$ and $\frac{4}{6}$. Using (4.1) we find that there is only one operator having spin $\frac{1}{6}$ and another one having spin $\frac{2}{6}$ but there are two operators having spin $\frac{3}{6}$ and two for $\frac{4}{6}$. For spin $\frac{3}{6}$ we have one operator given by (4.9) and another one with anomalous dimensions

$$
\begin{equation*}
\bar{\Delta}_{3,1}-\Delta_{8,7}=\frac{3}{6} \quad \bar{\Delta}_{3,1}+\Delta_{8,7} \simeq 1.86 . \tag{4.11}
\end{equation*}
$$

For spin $\frac{4}{6}$ we have one operator given by (4.9) and another operator

$$
\begin{equation*}
\bar{\Delta}_{7,6}-\Delta_{6,4}=\frac{4}{6} \quad \bar{\Delta}_{7,6}+\Delta_{6,4} \simeq 1.89 . \tag{4.12}
\end{equation*}
$$

The finite-size scaling amplitudes will show us whether our assumption (equation (4.9)) was right.
(b) meven. Here we take

$$
\begin{align*}
& x_{Q}=x_{h}=2 \Delta_{m / 2, m / 2}=\frac{m^{2}-4}{8 m(m+1)} \tag{4.13}\\
& x_{t}=2 \Delta_{1,2}=\frac{m-2}{2(m+1)} \tag{4.14}\\
& \frac{x_{Q, s}}{2}=\frac{x_{h, s}}{2}=\frac{1}{2} \Delta_{3,1}=\frac{m+2}{2 m} \tag{4.15}
\end{align*}
$$

and for the 'para-fermionic' operators

$$
\begin{align*}
& p=\frac{1}{2} m \quad s=l / p \quad l=1,2, \ldots, p-1 \tag{4.16}\\
& s=\bar{\Delta}_{2 l+1,2 l}-\Delta_{m-2 l+1, m-2 l+1} \tag{4.17a}\\
& x(s)=\bar{\Delta}_{2 l+1,2 l}+\Delta_{m-2 l+1, m-2 l+1} \tag{4.17b}\\
& \quad=\frac{1}{2}+\frac{s^{2} m+1}{2(m+1)} .
\end{align*}
$$

From (4.17b) we obtain the bounds

$$
\begin{equation*}
1 \geqslant x(s) \geqslant \frac{1}{2} . \tag{4.18}
\end{equation*}
$$

The tricritical n-state Potts models correspond to $m=4(n=2), m=6(n=3)$ and $m=\infty(n=4)$.

Since in the next section we are going to 'hunt' for the central charge c of the Virasoro algebra from the knowledge of the scale dimensions, in figure 1 we display x_{t}, x_{h} and $\frac{1}{2} x_{h, s}$ as a function of m. We notice that $x_{h} \simeq 0.1$ for all the values of m. The exponents x_{y} and $x_{h, s}$ have a stronger dependence on m but again for $m>15$ the dependence is weak. In view of the application to the six-state model $(p=6)$, in figure 2 we display $x(s)$ for $s=\frac{1}{6}, \frac{2}{6}, \frac{3}{6}$ and $\frac{4}{6}$. We notice again a weak dependence on m but one qualitative picture emerges: the values of $x(s)$ increase with s and they all cluster around $x(s) \approx 0.6$. Finally in figure 3 we give $x(s)$ for $s=\frac{1}{8}, \frac{2}{8}, \frac{3}{8}$ and $\frac{4}{8}$. These values

Figure 1. The scale dimensions x_{t}, x_{h} and $\frac{1}{2} x_{h, s}$ as a function of m according to (4.3) and (4.13)-(4.15).

Figure 2. The scale dimensions $x(s)$ for 'para-fermions' of spin s ((4.9) and (4.17)) as a function of m. The figure is relevant for the six-state model.
will be useful for the eight-state model. The qualitative picture is the same as in figure 2.

In $\S \S 3$ and 4 we have gathered together the necessary ingredients for the analysis of the six- and eight-state systems to which we now proceed.

5. Numerical results for the six- and eight-state cubic models

We now present the numerical results for the finite-size scaling amplitudes. As mentioned earlier, we have considered only the self-dual case (see equation (2.10)) of the Hamiltonian (2.3) and because of the large amount of computer work involved we have taken only three values for the coupling constant $\varepsilon: 0, \frac{1}{3}$ and $\frac{3}{5}$. All calculations were done for $\lambda=1$.

Figure 3. The scale dimensions $x(s)$ for 'para-fermions' of spin s as a function of m. The figure is relevant for the eight-state model.

The independent finite-size amplitudes (see equations (2.13) and (2.14)) are presented in tables $1-4$ only for two values of $\varepsilon . N$ indicates the number of sites of the quantum chains and we have used the definitions given by (3.4)-(3.6). From these tables we have obtained the asymptotic (large N) values of the finite-size scaling amplitudes using the Van den Broeck-Schwartz (1979) approximants and power fits. The estimates for the finite-size scaling amplitudes for all three values of ε are given in tables 5 and 6. A dash corresponds to amplitudes which have not been computed.

We first check for conformal invariance. According to (3.4b) and (3.4c) we should have

$$
\begin{equation*}
R^{(2)}=R^{(3)}=R^{(\mathrm{F})} \tag{5.1}
\end{equation*}
$$

for the six-state model and

$$
\begin{equation*}
R^{(2)}=R^{(4)}=R^{(\mathrm{F})} \tag{5.2}
\end{equation*}
$$

for the eight-state model. From tables 5 and 6 we see that the relations (5.1) and (5.2) are satisfied for the three values of ε and thus the systems are conformal invariant and the phase transitions are second order. This conclusion should be taken as usual with a caveat. One can never rule out the possibility of a weak first-order phase transition with a correlation length much larger than the size of our chains such that the approximate validity of the relations (5.1) and (5.2) is an artefact of the small values of N.

We estimate the value of $2 \pi \xi$ (see equations (3.4a,b)) to be $4.9(\varepsilon=0), 4.8\left(\varepsilon=\frac{1}{3}\right)$ and $4.7\left(\varepsilon=\frac{3}{5}\right)$ for the six-states model and $4.8(\varepsilon=0), 4.7\left(\varepsilon=\frac{1}{3}\right)$ and $4.65\left(\varepsilon=\frac{3}{5}\right)$ for the eight-state model. We now use (3.4a), (3.5a,b) and (3.6) to determine the scale dimensions. In table 7 we give the normalised values of the finite-size scaling amplitudes for the six-state model

$$
\begin{equation*}
\bar{R}^{(0)}=R^{(0)} / 2 \pi \xi \quad \bar{R}^{(2)}=R^{(2)} / 2 \pi \xi \ldots \tag{5.3}
\end{equation*}
$$

The normalised values are equal to the scale dimensions (the errors in the table are very subjective). We now discuss the critical exponents. First the order operators: we note that if $x_{1}=\bar{P}_{0}^{(1)}$ is constant (independent of ε), for the other two $x_{2}=\bar{P}_{0}^{(2)}$ and $x_{3}=\bar{P}_{0}^{(3)}$, we have

$$
\begin{equation*}
x_{2} \simeq x_{3} \neq x_{1} \tag{5.4}
\end{equation*}
$$

Table 1. Finite-size scaling amplitudes ((3.4)-(3.6)) for the six-state model with $\varepsilon=\frac{3}{5}$. N indicates the number of sites of the quantum chain.
(a)

N	$R^{(0)}$	$R^{(2)}$	$R^{(3)}$	$R^{(\mathrm{F})}$
2	3.342703268	2.782951712	3.356682202	3.120971442
3	3.097699012	3.610198613	4.219913101	3.562277358
4	2.912346252	3.956038839	4.526642045	3.796592588
5	2.774659182	4.137524193	4.658174850	3.940922004
6	2.667678039	4.247657090	4.722399645	4.038877440
7	2.581146340	4.321405446	4.756525144	
8	2.508914826	4.374390736	4.775723157	

(b)

N	$P_{1}^{(1)}$	$P_{2}^{(1)}$	$P_{3}^{(1)}$	$P_{2}^{(2)}$	$P_{3}^{(2)}$	$P_{3}^{(3)}$
2	1.956643771	2.200567413	2.771652582	2.256217806	2.337844097	3.157959355
3	1.990216813	2.302663569	2.899790647	2.410079121	2.451943000	3.316860207
4	2.017281208	2.363998332	2.951050395	2.508177023	2.528219212	3.377466549
5	2.039271510	2.407077399	2.978603541	2.578184089	2.582833764	3.407477214
6	2.058016053	2.440196919	2.996520749	2.631750481	2.624475582	3.425108906
7	2.074576010	2.467154938	3.009765863	2.674687019	2.657735409	3.436839168
8	2.089573747	2.489964907	3.020444420	2.710264410	2.685232896	3.445417189

(c)

N	$P_{1}^{(0)}$	$P_{2}^{(0)}$	$P_{3}^{(0)}$	$P_{1}^{(\mathrm{F})}$	$P_{2}^{(\mathrm{F})}$	$P_{3}^{(\mathrm{F})}$
2	0.7037459973	0.7410330467	0.8865261499	1.349007104	1.405882093	1.677676838
3	0.6455839598	0.6963259431	0.8076678415	1.534931509	1.634941537	1.902551047
4	0.6189463983	0.6765303135	0.7689186681	1.656810490	1.788812381	2.046755361
5	0.6027876648	0.6641957135	0.7441555901	1.746182999	1.902643698	2.150225711
6	0.5914995498	0.6551012024	0.7261531891	1.816396561	1.992114077	2.229901180
7	0.5829217148	0.6477480023	0.7120406037			
8	0.5760319296	0.6414699651	0.7004229544			

for both $\varepsilon=0$ and $\varepsilon=\frac{1}{3}$ and $x_{2} \simeq x_{3}$ varies with ε. Thus similar to the four-state model (see equation (2.12)) the scale dimensions depend on the coupling constant ε. The same observation is valid for $x_{t}=\bar{R}(0), x_{1,1}=\vec{P}_{1}(1)$, etc.

In order to obtain more confidence in our estimates and to have an independent check of conformal invariance we have computed x_{t} from the energy gap $G(\lambda, N)$ of the N-site Hamiltonian with periodic boundary conditions. This calculation was done for the six-state problem with $\varepsilon=0$. Using (Barber 1983)

$$
\begin{equation*}
x_{\mathrm{t}}=2-\ln \left(\frac{\mathrm{d} G(\lambda, N+1)}{\mathrm{d} \lambda}\left(\frac{\mathrm{~d} G(\lambda, N)}{\mathrm{d} \lambda}\right)^{-1}\right)_{\lambda=1}[\ln ((N+1) / N)]^{-1} \tag{5.5}
\end{equation*}
$$

and chains with up to eight sites, we have obtained

$$
\begin{equation*}
x_{t} \simeq 0.67 \tag{5.6}
\end{equation*}
$$

in excellent agreement with the value quoted in table 7.

Table 2. Finite-size scaling amplitudes for the six-state model with $\varepsilon=0$.
(a)

N	$R^{(0)}$	$R^{(2)}$	$R^{(3)}$	$R^{(\mathrm{F})}$
2	3.265986324	2.431465694	4.000000000	3.055050463
3	3.217130713	3.273486086	4.225450834	3.574321834
4	3.166560431	3.719487494	4.525136958	3.859176407
5	3.129092960	3.988802304	4.651846733	4.034680822
6	3.102392079	4.163139479	4.711019987	4.151974834
7	3.083454761	4.282319417	4.739530329	4.235144755
8	3.070079156	4.366862294	4.752628479	4.296805440

(b)

N	$P_{1}^{(1)}$	$P_{2}^{(1)}$	$P_{3}^{(1)}$	$P_{2}^{(2)}$	$P_{3}^{(2)}$	$P_{3}^{(3)}$
2	1.732181543	2.168161307	3.284476879	2.456049754	3.284476879	5.284476879
3	1.652725453	2.252364865	3.274938517	2.817735833	3.470028577	5.116110198
4	1.608310366	2.296660485	3.252158368	3.059151377	3.587297107	5.018872819
5	1.578458502	2.322272148	3.233204674	3.228135970	3.669874272	4.957896917
6	1.556292009	2.337902352	3.218787271	3.352276863	3.732373347	4.920138710
7	1.538743609	2.347716992	3.207871512	3.447211037	3.782092620	4.897046765
8	1.524221156	2.353926488	3.199500969	3.522223548	3.823101279	4.883437575

(c)

N	$P_{1}^{(0)}$	$P_{2}^{(0)}$	$P_{3}^{(0)}$	$P_{1}^{(\mathrm{F})}$	$P_{2}^{(\mathrm{F})}$	$P_{3}^{(\mathrm{F})}$
2	0.6682475505	0.8530111846	1.284476879	1.266661976	1.508706152	2.296399853
3	0.5974953545	0.8478636068	1.146096718	1.383360885	1.808689853	2.521452175
4	0.5672887580	0.8523399812	1.092943573	1.447513690	2.004689443	2.658115409
5	0.5509014075	0.8578010556	1.067927361	1.487226533	2.142075856	2.751411146
6	0.5407050007	0.8630230125	1.055173117	1.513587760	2.243366560	2.820177580
7	0.5337526146	0.8678392397	1.048647834	1.531861182	2.320924235	2.873567770
8	0.5286908237	0.8722762130	1.045617017	1.544870816	2.382073508	2.916584149
9	0.5248200942	0.8763907887	1.044687159			

There is finally another argument for the case of a second-order transition. The estimates for the scale dimension x_{1} of the order parameter have small errors and they give $x_{1} \simeq 0.11$ which is a typical figure for this operator (see the Kohmoto et al (1981) model mentioned in $\S 2$ and figure 1). For a first-order transition one would expect $x_{1}=0$ (Fisher and Berker 1982, Privman and Fisher 1983).

We now turn to the problem of the central charge. We notice that for $\varepsilon=\frac{3}{5}$ we can take

$$
\begin{align*}
& x_{1} \approx x_{2} \approx x_{3} \approx x_{h} \tag{5.7}\\
& \frac{1}{2} x_{1, s}=\bar{P}_{1}^{(\mathrm{F})} \approx \frac{1}{2} x_{2, s}=\bar{P}_{2}^{(\mathrm{F})} \approx \frac{1}{2} x_{3, s}=\bar{P}_{3}^{(\mathrm{F})}=\frac{1}{2} x_{h, s} .
\end{align*}
$$

We also have (see equations (4.6), (4.9) and (4.17))

$$
\begin{equation*}
x\left(\frac{1}{6}\right)=\bar{P}_{1}^{(1)} \quad x\left(\frac{2}{6}\right)=\bar{P}_{1}^{2} \quad x\left(\frac{3}{6}\right)=\bar{P}_{1}^{(3)} \quad x\left(\frac{4}{6}\right)=\bar{P}_{2}^{(2)} \tag{5.8}
\end{equation*}
$$

where $x(s)$ is the scale dimension of an operator of spin s. An inspection of figures 1 and 2 teaches us that one obtains a consistent picture for the exponents taking m

Table 3. Finite-size scaling amplitudes for the eight-state model with $\varepsilon=\frac{3}{5}$.
(a)

N	$R^{(0)}$	$R^{(2)}$	$R^{(4)}$	$R^{(\mathbf{F})}$
2	2.916624852	2.641218744	2.990403673	2.894977435
3	2.569510466	3.420115659	3.815152049	3.307774952
4	2.329492261	3.748885126	4.128706796	3.532401445
5	2.153782144	3.924267827	4.278742414	3.675635026
6	2.016741405	4.033499918	4.363361820	3.777046548
7	1.904791706	4.109323824	4.417379088	

(b)

N	$P_{1}^{(1)}$	$P_{2}^{(1)}$	$P_{3}^{(1)}$	$P_{4}^{(1)}$	$P_{2}^{(2)}$	$P_{4}^{(4)}$	
2	1.957853002	2.097273916	2.209900471	2.709310025	2.407405310	2.381771373	2.778849175
3	2.031930246	2.205159526	2.315758792	2.862903513	2.586785352	2.509486429	2.935829645
4	2.097364287	2.283629896	2.385369071	2.939027996	2.691068745	2.590236010	3.012661196
5	2.153853141	2.345655713	2.439707457	2.988050346	2.763995848	2.647160367	3.056473301
6	2.203829391	2.397736459	2.485814127	3.024934530	2.820611987	2.691088096	3.082890445
7	2.249048287	2.443275295	2.526771902	3.055452550	2.867516099	2.727295248	3.102288772

(c)

\boldsymbol{N}	$P_{1}^{(0)}$	$P_{2}^{(0)}$	$P_{4}^{(0)}$	$P_{1}^{(\mathrm{F})}$	$P_{2}^{(\mathrm{F})}$	$P_{4}^{(\mathrm{F})}$
2	0.6834795776	0.6982906029	0.8491056743	1.400537042	1.433004157	1.734908872
3	0.6186815919	0.6361173544	0.7511971947	1.635310944	1.688309710	2.002783856
4	0.5860537775	0.6037038516	0.6976324640	1.801158088	1.867195430	2.180993223
5	0.5639667759	0.5810522865	0.6604431817	1.930546670	2.005181489	2.313446064
6	0.5467848159	0.5630300215	0.6316241638	2.037738335	2.118203783	2.419133487
7	0.5323660850	0.5476861060	0.6078637335			

large. In table 7 we have given the predictions obtained for $m=\infty(c=1)$ and they are in very good agreement with the finite-size scaling estimates.

A comment about the finite-size scaling amplitudes $\bar{P}_{2}^{(3)}$ and $\bar{P}_{3}^{(3)}$ is in order. According to the Fradkin-Kadanoff (1980) ansatz (see equation (4.6)) one should expect the operator corresponding to $\bar{P}_{2}^{(3)}$ to have spin 1 and that corresponding to $\bar{P}_{3}^{(3)}$ to have spin $\frac{3}{2}$ but this is in contradiction with the estimates for $\bar{P}_{2}^{(3)}$ and $\bar{P}_{3}^{(3)}$ which are smaller than one and the trivial observation that $x>s$. As mentioned earlier (see §4) a similar situation occurs in the four-state Potts model.

We now consider the eight-state model. In this case the normalised scaling amplitudes are not ε dependent and we have

$$
\begin{align*}
& x_{h}=\bar{P}_{0}^{(1)} \simeq \bar{P}_{0}^{(2)} \simeq \bar{P}_{0}^{(4)} \quad x_{t}=\bar{R}^{(0)} \\
& \frac{1}{2} x_{h, s}=\bar{P}_{1}^{(\mathrm{F})} \simeq \bar{P}_{2}^{(\mathrm{F})} \simeq \bar{P}_{4}^{(\mathrm{F})} \\
& x\left(\frac{1}{8}\right)=\bar{P}_{1}^{(1)} \quad x\left(\frac{2}{8}\right)=\bar{P}_{1}^{(2)} \quad x\left(\frac{3}{8}\right)=\bar{P}_{1}^{(3)} \tag{5.9}\\
& x\left(\frac{4}{8}\right)=\bar{P}_{1}^{(4)} \simeq \bar{P}_{2}^{(2)} .
\end{align*}
$$

The estimates for the normalised scaling amplitudes are given in table 8. We again have to look for the central charge and use figures 1 and 3 . We notice that for $m=16$ the agreement between the estimates and the predictions obtained from conformal invariance is very good.

Table 4. Finite-size scaling amplitudes for the eight-state model with $\varepsilon=0$.
(a)

N	$R^{(0)}$	$R^{(2)}$	$R^{(4)}$	$R^{(\mathrm{F})}$
2	3.061467459	2.472135955	4.000000000	2.947251516
3	2.854395782	3.251227892	4.207699618	3.411417226
4	2.677198642	3.625200209	4.553971545	3.663167754
5	2.533203176	3.842612950	4.697270784	3.821500222
6	2.413732253	3.985107864	4.768375005	3.931166251
7	2.312171250	4.086433952	4.807938105	4.012479109

(b)

N	$P_{1}^{(1)}$	$P_{2}^{(1)}$	$P_{3}^{(1)}$	$P_{4}^{(1)}$	$P_{2}^{(2)}$	$P_{4}^{(2)}$	$P_{4}^{(4)}$
2	1.858333539	2.094730847	2.211168973	3.226251859	2.397824735	3.226251859	5.226251859
3	1.905891474	2.192453335	2.290637024	3.289118590	2.600803603	3.225770537	4.953280227
4	1.959697294	2.263233176	2.342839300	3.305877888	2.720699517	3.216285202	4.720492063
5	2.009363385	2.318979639	2.384777842	3.313049180	2.802758926	3.208126517	4.547587650
6	2.054405377	2.365486018	2.421211886	3.318240162	2.864349588	3.202247456	4.415973950
7	2.095491914	2.405792977	2.454073075	3.323393588	2.913510850	3.198439782	4.312780773

(c)

N	$P_{1}^{(0)}$	$P_{2}^{(0)}$	$P_{4}^{(0)}$	$P_{1}^{(\mathrm{F})}$	$P_{2}^{(\mathrm{F})}$	$P_{4}^{(\mathrm{F})}$
2	0.7322926521	0.7541159045	1.226251859	1.368346484	1.443131285	2.271558410
3	0.6733711278	0.7033230103	1.039241511	1.578371581	1.694367711	2.484828378
4	0.6436034762	0.6762413556	0.9423483862	1.724706028	1.865230566	2.613976445
5	0.6238154796	0.6569702419	0.8789644422	1.837824848	1.993917262	2.704458501
6	0.6087686648	0.6414816515	0.8324710852	1.930834413	2.097212781	2.774051766
7	0.5964149722	0.6282415989	0.7959711875	2.010447330	2.183775554	2.831010485

Table 5. Estimates for the asymptotic (large N) values of the finite-size scaling amplitude: the six-state model.

ε	0	$\frac{1}{3}$	$\frac{3}{5}$
$R^{(0)}$	$2.95-3.15$	$2.10-2.40$	$1.80-2.30$
$R^{(2)}$	$4.75-4.95$	$4.75-4.90$	$4.60-4.70$
$R^{(3)}$	$4.75-5.10$	$4.80-5.00$	$4.70-5.00$
$R^{(\mathrm{F})}$	$4.65-4.75$	-	$4.50-4.60$
$\left.P_{0}^{(1)}\right)$	$0.48-0.51$	$0.50-0.53$	$0.51-0.54$
$P_{0}^{(2)}$	$0.90-0.93$	$0.66-0.72$	$0.56-0.62$
$P_{0}^{(3)}$	$1.00-1.10$	$0.69-0.75$	$0.57-0.63$
$P_{1}^{(1)}$	$1.35-1.45$	$1.85-1.95$	$2.15-2.30$
$P_{1}^{(2)}$	$2.30-2.40$	$2.55-2.70$	$2.60-2.75$
$P_{1}^{(3)}$	$3.10-3.15$	$3.10-3.15$	$3.00-3.15$
$P_{2}^{(2)}$	$4.00-4.30$	$3.30-3.50$	$2.90-3.15$
$P_{2}^{(3)}$	$4.05-4.30$	$3.30-3.45$	$2.85-3.00$
$P_{3}^{(3)}$	$4.70-5.00$	$3.90-4.00$	$3.45-3.55$
$P_{1}^{(\mathrm{F})}$	1.55 ± 1.70	-	$2.20-2.40$
$P_{2}^{(\mathrm{F})}$	2.75 ± 2.95	-	$2.50-2.75$
$P_{3}^{(\mathrm{F})}$	3.15 ± 3.35	-	$2.65-2.90$

Table 6. Estimates for the asymptotic (large N) values of the finite-size scaling amplitude: the eight-state model.

$\boldsymbol{\varepsilon}$	0		
$\boldsymbol{R}^{(0)}$	$1.60-2.00$	$1.35-1.70$	$1.20-1.55$
$\boldsymbol{R}^{(2)}$	$4.65-4.80$	$4.55-4.70$	$4.50-4.65$
$\boldsymbol{R}^{(4)}$	$4.70-4.85$	$4.60-4.75$	$4.55-4.70$
$\boldsymbol{R}^{(\mathrm{F})}$	$4.45-4.60$	-	$4.30-4.45$
$\boldsymbol{P}_{0}^{(1)}$	$0.52-0.57$	$0.47-0.52$	$0.45-0.50$
$\boldsymbol{P}_{0}^{(2)}$	$0.54-0.60$	$0.48-0.53$	$0.45-0.50$
$\boldsymbol{P}_{0}^{(4)}$	$0.56-0.60$	$0.49-0.54$	$0.45-0.50$
$\boldsymbol{P}_{1}^{(1)}$	$2.25-2.50$	$2.35-2.60$	$2.42-2.67$
$\boldsymbol{P}_{1}^{(2)}$	$2.52-2.77$	$2.60-2.85$	$2.62-2.87$
$\boldsymbol{P}_{1}^{(3)}$	$2.52-2.77$	$2.60-2.85$	$2.65-2.90$
$\boldsymbol{P}_{1}^{(4)}$	$3.33-3.40$	$3.30-3.40$	$3.25-3.35$
$\boldsymbol{P}_{2}^{(2)}$	$3.15-3.30$	$3.10-3.30$	$3.10-3.30$
$\boldsymbol{P}_{(4)}^{(4)}$	$3.15-3.25$	$2.95-3.10$	$2.85-3.05$
$\boldsymbol{P}_{4}^{(4)}$	$3.50-3.85$	$3.30-3.50$	$3.05-3.25$
$\boldsymbol{P}_{1}^{(\mathrm{F})}$	$2.55-2.90$	-	$2.75-3.10$
$P_{2}^{(\mathrm{F})}$	$2.80-3.10$	-	$2.90-3.20$
$\boldsymbol{P}_{4}^{(\mathrm{F})}$	$3.20-3.40$	-	$3.10-3.40$

Table 7. Estimates for the normalised finite-size scaling amplitudes for the six-state model. The predictions correspond to the scale dimensions obtained from the Virasoro algebra with $m=\infty(c=1)$.

ε	Estimates			Predictions$m=\infty$
	0	$\frac{1}{3}$	$\frac{3}{5}$	
$\bar{R}^{(0)}$	0.62 ± 0.06	0.47 ± 0.09	0.43 ± 0.15	0.5
$\bar{R}^{(2)}$	0.99 ± 0.05	1.00 ± 0.03	0.99 ± 0.03	1
$\bar{R}^{(3)}$	1.00 ± 0.05	1.00 ± 0.05	1.03 ± 0.09	1
$\bar{R}^{(F)}$	0.96 ± 0.05	-	0.97 ± 0.03	,
$\bar{P}_{0}^{(1)}$	0.102 ± 0.005	0.11 ± 0.01	0.11 ± 0.01	0.125
$\bar{P}_{0}^{(2)}$	0.19 ± 0.01	0.14 ± 0.02	0.12 ± 0.02	0.125
$\bar{P}^{(3)}$	0.21 ± 0.03	0.15 ± 0.02	0.13 ± 0.02	0.125
$\bar{P}_{1}^{(1)}$	0.29 ± 0.03	0.40 ± 0.03	0.48 ± 0.06	0.514
$\vec{P}^{(2)}$	0.5 ± 0.1	0.54 ± 0.05	0.57 ± 0.06	0.555
$\bar{P}_{1}^{(2)}$	0.63 ± 0.06	0.65 ± 0.05	0.65 ± 0.05	0.625
$\bar{P}_{2}^{(2)}$	0.85 ± 0.1	0.70 ± 0.05	$0.65 \cdot 0.05$	0.722
$\bar{P}^{(2)}$	0.85 ± 0.1	0.70 ± 0.05	0.60 ± 0.05	-
$\bar{P}^{(3)}$	1.0 ± 0.1	0.85 ± 0.05	0.75 ± 0.05	-
	0.35 ± 0.1	-	0.50 ± 0.05	0.50
	0.60 ± 0.1	-	0.55 ± 0.05	0.50
$\bar{P}_{3}^{(\mathbf{F})}$	0.65 ± 0.1	-	0.60 ± 0.05	0.50

We would like to stress that assigning $m=\infty$ to the six-state model and $m=16$ to the eight-state model is, using the language of experimental physicists, very preliminary. More precise estimates for the finite-size scaling amplitudes are necessary to fix m.

Table 8. Estimates for the normalised finite-size scaling amplitudes for the eight-state model. The predictions correspond to the scale dimensions obtained from the Virasoro algebra with $m=16$.

		Predictions $m=16$
	Estimates	
$\bar{R}^{(0)}$	0.33 ± 0.04	0.411
$\bar{R}^{(2)}$	0.985 ± 0.01	1
$\bar{R}^{(4)}$	1.00 ± 0.01	1
$\bar{R}^{(\mathrm{F})}$	0.95 ± 0.02	1
$\bar{P}_{0}^{(1)}$	0.11 ± 0.01	0.116
$\overline{\boldsymbol{P}}_{1}^{(1)}$	0.52 ± 0.04	0.536
$\overline{\boldsymbol{P}}_{(2)}^{(2)}$	0.57 ± 0.05	0.558
$\bar{P}_{1}^{(3)}$	0.57 ± 0.05	0.595
$P_{1}^{(4)}$	0.71 ± 0.05	0.647
$P_{2}^{(2)}$	0.68 ± 0.03	0.647
$P_{(4)}^{(4)}$	0.65 ± 0.02	-
$P_{4}^{(4)}$	0.72 ± 0.04	-
$\bar{P}_{1}^{(\mathrm{F})}$	0.65 ± 0.10	0.562

References

Aharony A 1977 J. Phys. A: Math. Gen. 10389
Badke R, Reinicke P and Rittenberg V 1985 J. Phys. A: Math. Gen. 18653
Barber M N 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (London: Academic)
Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241333
Binder K 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (London: Academic)
Bradcken A J and Green H S 1972 Nuovo Cimento A 9349
Burkhardt T W and Guim T 1985 J. Phys. A: Math. Gen. 18 L33
Cardy J L 1984a J. Phys. A: Math. Gen. 17 L385
_—1984b J. Phys. A: Math. Gen. 17 L961
——1984c Nucl. Phys. B 240514
Derrida B and de Seze J 1982 J. Physique 43475
Dotsenko V S 1984 Nucl. Phys. B 23554
Fisher M E and Berker A N 1982 Phys. Rev. B 262507
Fradkin E and Kadanoff L P 1980 Nucl. Phys. B 1701
Friedan D, Qiu Z and Shenker S H 1984 Phys. Rev. Lett. 521575
Fubini S, Hanson A J and Jackiw R 1973 Phys. Rev. D 71732
Igloi F 1986a J. Phys. A: Math. Gen. 19563

- 1986b J. Phys. A: Math. Gen. 19575

Igloi F and Sólyom J 1984 J. Phys. A: Math. Gen. 171531
Kim D, Levy P M and Uffer L F 1975 Phys. Rev. B 12989
Kohmoto M, den Nijs M and Kadanoff L P 1981 Phys. Rev. B 245229
Luck J M 1982 J. Phys. A: Math. Gen. 15 L169
Nienhuis B, Riedel E K and Schick M 1983 Phys. Rev. B 275625
Nightingale M P and Blöte H W 1984 J. Phys. A: Math. Gen. 16 L657
Patkos A and Rujan P 1985 Phys. Lett. B to be published
Potts R B 1952 Proc. Camb. Phil. Soc. 48106
Privman V and Fisher M E 1983 J. Stat. Mech. 33385
——1984 Phys. Rev. B 30322
Van den Broeck J M and Schwartz L W 1979 SIAM J. Math. Anal. 10639
von Gehlen G, Rittenberg V and Ruegg H 1986 J. Phys. A: Math. Gen. 19107

[^0]: \dagger Para-fermions in statistical mechanics (Fradkin and Kadanoff 1980) and particle physics (Bradcken and Green 1972) are not obviously related objects.

